GANDHI ACADEMY OF TECHNOLOGY AND ENGINEERING DEPARTMENT OF ELECTRICAL ENGINEERING # Sub: BASIC ELECTRICAL ENGINEERING - CO₁: Implement principles of DC network, theorems and transients. - CO2: Analyze the concept of Single phase AC Circuits - CO3: Analyze the concept of Three phase AC Circuits. - CO₄: Express the concept of magnetic circuit and DC machines. - CO₅: Apply basic principles of AC machines and their working. - CO₆: Demonstrate basic principles of power system #### Sub: NETWORK THEORY - CO₁: Apply network theorems for the analysis of electrical circuits. - CO₂: Obtain the transient and steady-state response of electrical circuits. - CO₃: Analyze the steady-state response of single-phase and three-phase circuits using sinusoidal excitation. - CO₄: Understand coupled circuits. - CO₅: Apply Laplace Transformation for network analysis and realize its behavior. - CO6: Analyze two port circuits and network functions. #### Sub: ELECTRICAL MACHINE - I - CO1: Understand the concepts of magnetic circuits - CO₂: Understand the operation of Electromagnetic force and Torque. - CO₃: Analyze the differences in operation of different dc machine configurations. - CO₄: Cultivate critical thinking skills by evaluating the performance of DC generator. - CO₅: Understand the operation of DC motor. - CO₆: Analyze single phase and three phase transformers circuits. #### Sub: POWER ELECTRONICS - CO₁: Gain a comprehensive understanding of the working principles & V-characteristics of diodes, thyristors, MOSFETs, and IGBTs. - CO₂: Develop the ability to design and analyze single-phase full-bridge and three-phase full- bridge thyristor rectifiers, taking into account resistive and highly inductive loads. - CO₃: Acquire proficiency in analyzing the power circuit of a Buck converter and deriving waveforms at steady state, considering various operating conditions. - CO₄: Explore various techniques to optimize the efficiency and performance of Boost converters, including considerations of switching frequency and component selection. - CO₅: Master the analysis and design of single-phase Voltage Source Inverters, including the selection of modulation techniques, calculation of modulation indices, and prediction of output voltage characteristics for practical applications. - CO₆: Effectively analyze and design three-phase Voltage Source Inverters, integrating switch states and sinusoidal modulation techniques for practical implementation. ## Sub: ELECTROMAGNETIC THEORY - CO₁: Foundation of classical electromagnetism and are crucial for understanding the behavior of electric and magnetic fields. - CO₂: Analyze electromagnetic fields with sinusoidal variation over time using Maxwell's Equations. - CO₃: Fundamental in the study of electromagnetic waves, their interactions with different materials, and their propagation characteristics in various mediums. - CO₄: To design control systems that exhibit desirable stability, accuracy, disturbance rejection, insensitivity and robustness properties. - CO_s: To design and tune PID controllers and compensators for feedback control systems. - CO₆: To analyze, design, and control dynamic systems using state space representation. #### Sub- FLECTRIC POWER TRANSMISSION AND DISTRIBUTION - CO₁: Gain knowledge about the historical evolution of power systems and conventional sources of electrical energy. - CO₂: Develop skills in calculating inductance and capacitance in different transmission line setups. - CO₃: Acquire the ability to analyze and design efficient transmission lines, considering factors like voltage profiles and mechanical design. - CO₄: Understand fault analysis techniques in power systems and compute fault currents accurately - CO₅: Learn about the classification and characteristics of distribution systems and apply voltage regulation methods effectively. - CO₆: Master concepts related to underground cables and power system earthing for safe and reliable distribution networks. #### Sub: CONTROL SYSTEM - CO₁:To analyze, design, and implement control systems in industrial settings, utilizing mathematical modeling. - CO₂: To analyze, design, and evaluate the performance of control systems. - CO₃:To analyze and design control systems in both the time and frequency domains. - CO₄: To design control systems that exhibit desirable stability, accuracy, disturbance rejection and insensitivity and robustness properties. - CO₅: To design and tune PID controllers and compensators for feedback control systems. - CO₆:To analyze, design, and control dynamic systems using state space representation. ## Sub: ELECTRICAL MACHINE - II - CO₁: To impart knowledge on construction features of AC machine. - CO₂:To understand the principle of constant, pulsating and rotating magnetic field. - CO₃:To impart knowledge on Construction, principle of operation of induction machines. CO₄:Familiarity with the principles and operation of special machines such as - single-phase motors, stepper motors, and reluctance motors. CO₅: Ability to analyze and solve problems related to the steady-state and - dynamic behavior of Alternator. CO₆: Analyze the behavior of Synchronous motor at different loading conditions using V and inverted V curve. #### Sub: SMART GRID - $\text{CO}_{1}\text{:}\text{Understand}$ the evolution and key concepts of smart grids, including their architecture and functions. - ${\rm CO_2:Differentiate}$ between conventional and smart grids, and assess the need, opportunities, and challenges of smart grid implementation. - CO₃: Understand the principles and functions of Phasor Measurement Units and Wide Area Measurement Systems and their role in enabling wide-area protection and control. - CO₄: Evaluate the need for micro-grids and their application in enhancing grid resilience and analyze challenges and solutions to interconnecting micro-grids with the main grid. - CO₅: Analyze the integration of variable speed wind generators, fuel cells, and micro-turbines into the grid, including the advantages and disadvantages of distributed generation. - CO₆: Evaluate the impact of renewable energy sources on power quality and electromagnetic compatibility in smart grids and explore power quality conditioners for micro-grids, web-based power quality monitoring and power quality audit methodologies. #### SUB: FLECTRICAL MACHINE DESIGN: - CO₁: Understanding Transformer Design Principles. - CO₂: Capable of applying design considerations such as flux density selection, insulation materials, and cooling methods of electrical machines across various applications. - CO₃: Students will develop problem-solving skills in electrical machine design. - CO₄: Gain knowledge on Commutator and Armature design - CO₅: Competent in designing three-phase induction motors. - CO₆: Able to determine main dimensions, select appropriate winding configurations and optimize magnetic circuits for characteristics of Synchronous Machine. # Sub: RENEWABLE POWER GENERATION SYSTEM: - CO₁: Ability to create awareness about renewable Energy Sources & technologies. - CO₂: Ability to acquire knowledge about solar heat energy. - CO₃: Ability to recognize current and possible future role of solar PV Cell. - CO₄: Ability to explain the wind energy conversion and their applications. - CO₅: Ability to understand basics about biomass energy. - CO₆: Ability to acquire knowledge about Hybrid energy. ### Sub: POWER SYSTEM OPERATION AND CONTROL - CO₁: Perform per unit calculations in power system. - CO₂: Apply the concept of single line diagram for three phase system and solve the load flow problem using iterative methods. - ${\rm CO_{3}:}\ Investigate\ the\ constraints\ in\ load\ dispatch\ and\ plan\ economic\ operation\ of\ power\ system\ through\ unit\ commitment\ and\ economic\ load\ dispatch.$ - CO₄: Develop the model of ALFC and analyze the system response for single and multi-area power system. - CO₅: Recognize the concept of steady state and transient stability. - CO₆: Acquire knowledge to perform power system stability analysis using equal area criterion method and applying numerical solutions to swing equations. ## **Sub: ELECTRICAL POWER SYSTEM PROTECTION** - CO₁: Understand the various schemes available in current protection. - CO₂: Have knowledge on Transformer & Bus bar protection. - CO₃: Attain knowledge about Distance and Carrier protection of transmission lines. - CO₄: Understand the concepts of Generator protection. - CO₅: Attain knowledge on numerical protection Scheme. - CO6: Learners will understand the concepts of relavs.